Карл Саган любил повторять, что только сделанный из дерева человек не способен испытывать восхищение и уважение ко всему, что на сегодня удалось сотворить космосу. Благодаря новым возможностям наблюдения мы теперь знаем больше, чем Саган в свое время, о той изумительной последовательности событий, что легли в основу нашего существования. Знаем о квантовых флуктуациях в распределении вещества и энергии в масштабе менее одного протона, которые в результате привели к формированию суперкластеров галактик размером до 30 миллионов световых лет от края до края. От хаоса к космосу эта причинноследственная связь охватывает более 38 степеней десяти в размере и более 42 степеней десяти во времени. Словно микроскопические нити ДНК, которые предопределяют сущность макроскопического биологического вида и уникальные характеристики составляющих его особей, современный образ Вселенной был вплетен в ее канву с самого начала и пронесен сквозь время и пространство. Мы ощущаем это, когда смотрим вверх. Мы ощущаем это, когда смотрим вниз. Мы ощущаем это, когда заглядываем внутрь самих себя.
Часть III. Происхождение звезд и планет
Глава 10. Пыль к пыли
Выбравшись подальше от городских огней и взглянув на ясное ночное небо, вы сразу заметите облачное формирование бледного света, местами дополненное более темными пятнами, которое тянется от горизонта до горизонта. Уже давно известная всем как небесный «млечный путь» (да, с маленькой буквы), эта молочно-беловатая дымка несет в себе свет огромного количества звезд и газовых туманностей. Те, кому посчастливится глядеть на «млечный путь» сквозь бинокль или собственный домашний телескоп, смогут увидеть, как при приближении более темные и скучные участки… остаются такими же темными и скучными, в то время как рассеянное сияние более ярких участков превращается в мириады звезд и туманностей.
В свою небольшую книгу «Звездный вестник» [36], опубликованную в 1610 году в Венеции, Галилео Галилей включил первый отчет о небесах, таких, какими он видел их через телескоп; также он приложил к отчету описание более светлых участков Млечного Пути. Называя свой научный инструмент зрительной трубой, так как термина «телескоп» в обиходе еще не было (кстати, с греческого это слово переводится как «далеко смотрящий»), Галилей едва мог сдержать волнение.
«…Предметом нашего наблюдения была сущность или материя Млечного Пути. С помощью зрительной трубы ее можно настолько ощутительно наблюдать, что все споры, которые в течение стольких веков мучили философов, уничтожаются наглядным свидетельством, а мы избавляемся от многословных диспутов. Действительно, Галаксия является не чем иным, как собранием многочисленных звезд, расположенных группами. В какую бы его область ни направить зрительную трубу, сейчас же взгляду представляется громадное множество звезд, многие из которых кажутся достаточно большими и хорошо заметными. Множество же более мелких не поддается исследованию» [37].
Это самое «громадное множество звезд» Галилея, безусловно, похоже на объект основного астрономического интереса, ведь оно являет нам самые густонаселенные звездами регионы нашей галактики Млечный Путь. Так зачем кому бы то ни было интересоваться темными ее участками, в которых нет видимых звезд? Исходя из их внешнего облика такие темные участки, скорее всего, представляют собой космические дыры, открывающие путь к бесконечному и пустому пространству, что кроется за ними.
Пройдет еще целых три столетия, прежде чем кому-то придет в голову, что темные участки Млечного Пути не просто не являются «дырами», но состоят из плотных облаков газа и пыли, которые скрывают от нас более удаленные скопления звезд и, более того, могут размещать в своих недрах целые звездные кухни. Разделяя более ранние предположения американского астронома Джорджа Кэри Комстока, которого интересовало, почему далекие звезды выглядят бледнее, чем должны были бы согласно их предполагаемому расстоянию от нас, голландский астроном Якоб Корнелий Каптейн обнаружил виновника этого в 1909 году. В двух научных статьях с одинаковыми названиями «О поглощении света в космосе» [38] Каптейн представил наглядные доказательства того, что такие темные облака (его новообретенные «межзвездные среды») не только заслоняют свет, исходящий от звезд, но и делают это неравномерно с точки зрения палитры спектра излучения таких звезд: они поглощают и затем рассеивают, а значит, разбавляют свет в фиолетовом сегменте видимого спектра более эффективно, чем в красном. Такое избирательное поглощение приводит к тому, что фиолетового света нейтрализуется больше, чем красного, из-за чего удаленные звезды кажутся более красными, чем те, что расположены ближе к нам. Количество такого межзвездного покраснения звездного света увеличивается пропорционально суммарному объему материала, который свет встречает на своем пути к нам.
Обычные водород и гелий, принципиальные ингредиенты космических газовых облаков, не придают свету красноту. Однако сложные молекулы из многих атомов на это способны, особенно те, в которых содержатся углерод и кремний. Когда межзвездные частицы вырастают до такого размера, что становится неуместным называть их молекулами, учитывая составляющие их сотни тысяч или даже миллионы отдельных атомов в каждой такой «молекуле», мы называем их пылью. Большинству из нас знакома домашняя бытовая пыль, хотя немногие в курсе, что в совершенно закрытом доме такая пыль состоит из мертвых клеток человеческой кожи (а также перхоти домашних животных, если они у вас есть). Насколько нам известно, в состав космической пыли человеческий эпидермис не входит. Однако межзвездная пыль содержит исключительно богатый ассортимент сложных молекул, которые излучают фотоны в основном в инфракрасном и микроволновом диапазонах спектра. До 1960-х годов у астрофизиков не было хороших микроволновых телескопов, а приличных инфракрасных не имелось вплоть до 1970-х годов. Но как только они разработали и создали эти инструменты наблюдения, они смогли исследовать истинное химическое разнообразие всего того, что лежит между звезд. В течение десятилетий, последовавших за соответствующими прорывами в области технологий, на свет постепенно появлялась удивительная и сложная картина образования звезд.
Звезды формируются не из всех газовых облаков. Довольно часто газовое облако оказывается в ситуации, когда не понимает, что ему дальше делать. Точнее, это астрофизики не понимают, что им делать. Мы знаем, что межзвездное облако «хочет» коллапсировать под воздействием своей собственной гравитации, чтобы образовать из своего материала одну звезду или более. Но его вращение, как и влияние турбулентного движения газа внутри самого облака, мешает ему достигнуть